Примеры расчета цепей в курсовой работе по электротехнике

Электрические цепи переменного синусоидального тока Переменный ток (напряжение) и характеризующие его величины Переменным называется ток i(t) [напряжение u(t)], периодически изменяющийся во времени по произвольному закону. В электроэнергетике понятие ’’переменный’’ употребляют в более узком смысле, а именно: под переменным понимают ток (напряжение), изменяющийся во времени по синусоидальному закону: i(t)=Im sin(wt+yi), u(t)=Umsin(wt+yu)

Среднее и действующее значения переменного тока и напряжения

Векторные диаграммы переменных токов и напряжений Из курса математики известно, что любую синусоидальную функцию времени, например i(t)=Imsin(wt+a), можно изобразить вращающимся вектором при соблюдении следующих условий :   а) длина вектора в масштабе равна амплитуде функции Im ; б) начальное положение вектора при t = 0 определяется начальной фазой a; в) вектор равномерно вращается с угловой скоростью w, равной угловой частоте функции.

Теоретические основы комплексного метода расчета цепей переменного тока Из курса математики известно, что комплексное число Z может быть представлено в следующих трех формах: показательной, тригонометрической и алгебраической

Мощность переменного тока В сложной электрической цепи, состоящей из разнородных элементов R, L, C, одновременно происходят следующие физические процессы: а) необратимый процесс преобразования электрической энергии в другие виды (тепловую, механическую и др.), который называется активным; б) обратимый процесс колебания энергии между переменным электрическим полем конденсаторов , магнитным полем катушек и источником энергии, который называется реактивным.

Переменные ток в однородных идеальных элементах Существует три типа идеальных схемных элементов: резистор R, катушка L и конденсатор C. Рассмотрим процессы в цепи с каждым из названных элементов в отдельности

Электрическая цепь с последовательным соединением элементов R, L и C

Электрическая цепь с параллельным соединением элементов R, L и С

Передача энергии от активного двухполюсника (источника) к пассивному двухполюснику (приемнику) Двухполюсником называется устройство или часть схемы (цепи) с двумя выводами (полюсами). Если внутри двухполюсника содержатся источники энергии, то он называется активным (A), в противном случае – пассивным (П).

Компенсация реактивной мощности приемников энергии Активная мощность приемника P=UIcosj характеризует интенсивность потребления им энергии и зависит от режима его работы. Реактивная мощность приемника Q=UIsinj  характеризует интенсивность обмена энергией между электромагнитным полем приемника и остальной цепью. Эта мощность положительна при индуктивном характере приемника () и отрицательна при емкостном характере (). В промышленных условиях преобладающее большинство приемников имеют активно-индуктивный характер () и потребляют положительную реактивную мощность.

Резонанс в электрических цепях Определение резонанса В электрической цепи, содержащей катушки индуктивности L и конденсаторы C, возможны свободные гармонические колебания энергии между магнитным полем катушки   и электрическим полем конденсатора . Угловая частота этих колебаний wo, называемых свободными или собственными, определяется структурой цепи и параметрами ее отдельных элементов R, L ,C.

Резонансным режимом цепи или просто резонансом называется явление увеличения амплитуды гармонических колебаний энергии в цепи, наблюдаемое при совпадении частоты собственных колебаний wo с частотой вынужденных колебаний w, сообщаемых цепи источником энергии (wo = w).

Резонанс токов Резонанс в цепи с параллельным соединением источника энергии и реактивных элементов L и C получил название резонанса токов.

Резонанс в сложных схемах Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.

Физика, начертательная геометрия - лекции и примеры решения задач