Примеры расчета цепей в курсовой работе по электротехнике

Четырехполюсники и фильтры Уравнения четырехполюсника Четырехполюсником называется часть электрической цепи или схемы, содержащая два входных вывода (полюса) для подключения источника энергии и два выходных вывода для подключения нагрузки. К четырехполюсникам можно отнести различные по назначению технические устройства: двухпроводную линию, двухобмоточный трансформатор, фильтры частот, усилители сигналов и др. Теория четырехполюсников устанавливает связь между режимными параметрами на входе (U1, I1) и режимными параметрами на его выходе (U2, I2), при этом процессы, происходящие внутри четырехполюсника, не рассматриваются. Таким образом, единая теория четырехполюсника позволяет анализировать различные по структуре и назначению электрические цепи, которые могут быть отнесены к классу четырехполюсников.

Основы построения логических схем Импульсные сигналы: основные определения и терминология В настоящее время в системах радио и проводной связи, в телевидении, радиолокации, в электронных вычислительных машинах и в других областях радиоэлектроники широко используются импульсные устройства. Напряжения и токи в таких устройствах имеют характер импульсов и перепадов.

Схемы замещения четырехполюсника Так как четырехполюсник характеризуется тремя независимыми коэффициентами, то из этого следует, что его простейшая схема замещения должна содержать три независимые элементы. Существует две такие схемы: а) Т- образная схема или схема звезды, б) П-образная схема или схема треугольника

Способы соединения четырехполюсников Сложная цепь или схема может содержать несколько четырехполюсников, соединенных между собой тем или иным образом. При расчете таких схем отдельные группы четырехполюсников можно заменить эквивалентными одиночными четырехполюсниками и, таким образом, упростить схему цепи и, соответственно, решение задачи.

Характеристические параметры симметричного четырехполюсника

Основные понятия и определения электрических фильтров Электрическим фильтром называется четырехполюсник, предназначенный для выделения (пропускания) сигналов определенной полосы частот. В зависимости от пропускаемого спектра частот фильтры подразделяют на 4 основных вида:

  • фильтры низких частот (ФНЧ), пропускающие сигналы в диапазоне частот от w1=0  до w2;
  • фильтры высоких частот (ФВЧ), пропускающие сигналы в диапазоне частот от w1  до ;
  • полосовые фильтры (ПФ), пропускающие сигналы в диапазоне частот от w1  до w2;
  • заграждающие или режекторные фильтры (ЗФ), пропускающие сигналы в диапазоне частот от 0 до w1 и в диапазоне частот от w2  до  и не пропускающие сигналы в диапазоне частот от w1 до w2.

Фильтры нижних частот типа к

Полосовые фильтры

Заграждающие фильтры

Электрические цепи с распределенными параметрами Параметры электрических цепей в той или иной мере всегда распределены вдоль длины отдельных участков. В большинстве практических случаев распределением параметров вдоль длины пренебрегают и представляют электрическую цепь эквивалентной схемой с сосредоточенными схемными элементами R , L и C. Однако существует большой класс электрических цепей, для которых  пренебрежение распределением параметров вдоль длины приводит к существенным погрешностям при их расчёте и становится неприемлемым.

Дифференциальные уравнения цепи с распределенными  параметрами Рассмотрим двухпроводную однородную линию, физические параметры которой равномерно распределены по ее длине:

― активное сопротивление пары проводов на единицу длины [Ом/м], определяется по известной формуле , зависит от материала провода (γ ) и от ее температуры ;

Решение уравнений линии с распределенными параметрами в установившемся синусоидальном режиме Пусть напряжение и ток в линии с распределенными параметрами изменяются по синусоидальному закону:

,

 .

Волновые процессы в линии с распределенными параметрами

Линия с распределенными параметрами в различных режимах Расчет токов и напряжений в линии с распределенными параметрами при произвольной нагрузке  на основе совместного решения полученных ранее комплексных уравнений. Уравнения режима линии дополняются уравнениями закона Ома для начала и конца линии

Линия с распределенными параметрами без искажений Сигналы, передаваемые по линиям связи, являются несинусоидальными функциями времени и состоят из суммы гармоник различных частот. Если в линии созданы неодинаковые условия для различных гармоник, то в конце линии гармонический состав сигнала будет отличаться от гармонического состава этого же сигнала в начале линии, т.е. сигнал будет искажен. Для линий связи очень важным условием является создание такого режима работы, при котором отсутствовало бы искажение сигнала.

Линия с распределенными параметрами без потерь Для кабельных линий с распределенными параметрами, работающих на высоких частотах (линии связи), реактивные параметры значительно превосходят активные  и . При расчете режимов таких линий можно без особого ущерба для точности расчета пренебречь активными параметрами и принять их равными нулю . В таком случае линия становится идеальной или без потерь.

Расчет падающих волн в линии с распределенными параметрами при подключении ее к источнику ЭДС Пусть линия с волновым сопротивлением  в момент t = 0 подключается к источнику ЭДС   или  с нулевыми или с ненулевыми внутренними параметрами .

Расчет отраженных волн в линии с распределенными параметрами при подключении ее к источнику ЭДС После того как падающие волны  и  достигнут конца линии, при  возникнут отраженные волны и законы распределения напряжения и тока вдоль линии будут определяться наложением этих волн:

Рассмотрим примеры расчета отраженных волн в линии. Пример. В момент t = 0 линия с волновым сопротивлением  включается к источнику постоянной ЭДС e(t)=E, .

Пример. В момент t = 0 линия с волновым сопротивлением  включается к источнику постоянной ЭДС e(t) = E, . В конце линии включен конденсатор С.

Физика, начертательная геометрия - лекции и примеры решения задач