Примеры расчета цепей в курсовой работе по электротехнике

jackpot slots casino roulette online play games poker no deposit blackjack no download craps

Магнитные цепи переменного потока. Потери в сердечниках из ферромагнитного материала при периодическом перемагничивании. Магнитные цепи машин переменного тока, трансформаторов работают в режиме периодического перемагничивания, т.е. при переменном магнитном потоке ф(t). При периодическом перемагничивании ферромагнитных сердечников в них происходят потери энергии, которые выделяются в виде тепла. Эти потери условно можно разделить на два вида: а) потери на гистерезис рг и б) потери на вихревые токи рв. Потери на гистерезис обусловлены явлением гистерезиса

Расчет магнитной цепи переменного потока комплексным методом Машины переменного тока, трансформаторы, в которых ферромагнитные сердечники подвергаются периодическому перемагничиванию, работают в режиме вынужденного синусоидального напряжения на их обмотках. Рассмотрим работу магнитной цепи на примере сердечника трансформатора (рис. 252а). К обмотке трансформатора приложено синусоидальное напряжение , геометрические размеры магнитопровода и характеристики его материала заданы

Теория электромагнитного поля Электростатическое поле Электротехника ― это отрасль знаний об электромагнитных явлениях и их практическом применении в технике. Физической основой всех электромагнитных явлений является электромагнитное поле. Электромагнитное поле представляет собой вид материи, характеризующийся воздействием на заряженные частицы. Как вид материи электромагнитное поле обладает массой, энергией, количеством движения, оно может превращаться в вещество и наоборот.

Уравнения электростатического поля в интегральной и дифференциальной форме Интегральная форма уравнений описывает поле в конечных размерах объема, поверхности, линии, расположенных в пространстве. Дифференциальная форма тех же уравнений описывает поле в произвольных точках пространства.

Граничные условия в электростатическом поле

Уравнение Пуассона и Лапласа. Теорема единственности решения Расчет электростатических полей с использованием уравнений  и  возможен только в простейших случаях. Наиболее общим методом является расчет электростатических полей на основе решения уравнений Пуассона и Лапласа. Выведем эти уравнения.

Электростатическое поле осевых зарядов

Электростатическое поле и емкость двухпроводной линии Пусть требуется рассчитать электростатическое поле и емкость двухпроводной линии с заданными геометрическими размерами (радиус проводов R, межосевое расстояние d, радиус R соизмерим с расстоянием d). Провода линии не заземлены, к линии приложено постоянное напряжение U

Электростатическое поле и емкость цилиндрического провода, расположенного над проводящей плоскостью (землей) Пусть требуется рассчитать электростатическое поле и емкость цилиндрического провода, расположенного над проводящей плоскостью (землей). Заданны радиус провода R, высота подвески h (радиус R соизмерим с высотой h). К проводу приложено постоянное напряжение U

Поле многопроводной линии. Метод зеркальных отображений

Электрическое поле трехфазной линии электропередачи Геометрические размеры в поперечном сечении линии электропередачи несравнимо малы по сравнению с длиной электромагнитной волны на частоте 50 Гц (). По этой причине волновые процессы в поперечном сечении линии могут не учитываться, а полученные ранее соотношения для многопроводной линии в статическом режиме с большой степенью точности могут быть применены к расчету поля линий электропередач переменного тока на промышленной частоте f = 50 Гц. Изменяющиеся по синусоидальному закону потенциалы проводов ЛЭП по отношению к параметрам поля можно считать квазистатическими или медленно изменяющимся, и расчет параметров поля для каждого момента времени можно выполнять по полученным ранее уравнениям электростатики.

Электрическое поле постоянного тока Законы электрического поля в интегральной и дифференциальной формах Под электрическим током проводимости i понимается движение свободных зарядов в проводящей среде γ под действием сил электрического поля . Ток проводимости в каждой точке среды характеризуется вектором плотности

Методы расчета электрических полей постоянного тока Электрическое поле постоянного тока, с одной стороны, и электростатическое поле вне электрических зарядов (rсв=0), с другой стороны, описываются одинаковыми по структуре математическими уравнениями

Магнитное поле постоянных токов Уравнения магнитного поля в интегральной и дифференциальной формах Магнитное поле характеризуется двумя векторными величинами: – вектор напряженности магнитного поля, создается электрическими токами, является первопричиной магнитного поля [А/м];   – вектор индукции магнитного поля или плотность магнитных силовых линий [Тл].

Векторный потенциал магнитного поля Пусть требуется рассчитать магнитное поле в однородной среде (m=const) , в которой протекает электрический ток, плотность которого задана в виде некоторой функции координат . Для определения векторов поля   и  необходимо решить систему уравнений

Скалярный потенциал магнитного поля

Магнитное поле двухпроводной линии По двухпроводной линии с заданными геометрическими размерами (R – радиус проводов, d - расстояние между осями проводов) протекает постоянный ток I.

Магнитное поле сложной системы проводов с током В большинстве реальных случаев электрические токи, создающие магнитное поле, протекают по тонким каналам – электрическим проводам. Для создания сильных магнитных полей, используемых в технике, применяются системы проводов, образующие катушки индуктивности.

Переменное электромагнитное поле Основные уравнения Максвелла и их физический смысл Основы теории электромагнитного поля или электродинамики были впервые изложены в 1873 г. английским ученым Максвеллом в труде «Трактат об электричестве и магнетизме». Математические  уравнения, описывающие физические процессы в переменном электромагнитном поле, называются уравнениями Максвелла

Теорема Умова-Пойтинга для электромагнитного поля Теорема Умова-Пойтинга устанавливает баланс мощностей в произвольном объеме электромагнитного поля. Математическая база теоремы разработана русским математиком Умовым в 1874 году, а в 1884 году английский физик Пойтинг применил идеи Умова к электромагнитному полю. Выделим в переменном электромагнитном поле некоторый объем V, ограниченный поверхностью S. Внутри выделенного объема могут оказаться частично или полностью источники и приемники электрической энергии в любых сочетаниях. Электромагнитное поле внутри объема описывается системой уравнений Максвелла

Поток вектора Пойтинга в коаксиальном кабеле

Уравнения Максвелла в комплексной форме Если векторы поля  и  изменяются во времени по синусоидальному закону, то синусоидальные функции времени могут быть представлены комплексными числами и, соответственно, сами векторы будут комплексными

Плоская гармоническая волна в проводящей среде Пусть плоская гармоническая волна проникает в проводящую среду ) через плоскость, нормальную и направленную движения волны.

Поверхностный эффект в плоском листе Ранее было показано, что переменное электромагнитное поле быстро затухает по мере проникновения в толщу проводящей среды. Это приводит к неравномерному распределению поля по сечению магнитопровода, и следовательно, к неравномерному распределению магнитного потока по сечению: на оси магнитопровода плотность магнитного потока наименьшая, а у поверхностного - наибольшая.

Поверхностный эффект в круглом проводе

Физика, начертательная геометрия - лекции и примеры решения задач