Начертательная геометрия

Плоский чертёж.

Зададим плоскость Ф треугольником АВС (рис. 2-21).

Алгоритм решения задачи:

1. Проводим в плоскости Ф(АВС) горизонталь h(h1,h2).

2. Проводим g1(B1K1) ^ h1. Находим g2(B2K2) по принадлежности плоскости.

3. Находим натуральную величину g методом прямоугольного треугольника (рис. 2-21).

Рис. 2-21

4. Угол a между g1 u g - есть угол наклона плоскости Ф(АВС) к П1.

Рис. 2-22

Полное решение задачи представлено на рис. 2-23.

Рис. 2-23

Аналогично можно решить задачу на определение угла наклона плоскости Ф к П2. Для этого в плоскости Ф нужно взять фронталь, линию наибольшего наклона плоскости к П2 - е строить перпендикулярно фронтали (е2 ^ f2 ® е) и находить натуральную величину е на П2.

После вышесказанного, рассмотрим задание плоскости с помощью линии ската g (рис.2-24а) и линии наибольшего наклона плоскости к П2 - е (рис.2-25а). В первом случае при решении конкретных задач к линии ската необходимо добавить горизонталь (h2 ^ линиям связи, h1 ^ g1) (рис.2-24б); во втором к линии наибольшего наклона е добавляют фронталь (f1 ^ линиям связи, f2 ^ е2)(рис. 2-25б). В обоих случаях плоскость получается заданной пересекающимися прямыми.

а) б)

Рис. 2-26

а) б)

Рис. 2-27

Прямая, параллельная плоскости

Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, лежащей в этой плоскости.

Задача: Через точку К(К2,К1) провести прямую m(m1), параллельную плоскости S(aÇb)

Рис. 2-27

Алгоритм

1. В плоскости S (рис. 2-28) проведём прямую n, параллельную m. Для этого сначала проведём 1121 || m1, затем найдём 1222 в плоскости. Это будет n2

Рис. 2-28

2. Через 1222 проведем n2 .Через точку К2 проводим m2 параллельно n2.

3. Согласно пятому свойству параллельного проецирования прямая m параллельна прямой n, но nÌ S, следовательно, m || S

Рис. 2-29


Решение метрических задач с помощью преобразования комплексного чертежа