Начертательная геометрия

Винтовые поверхности

Как Вы думаете, какое свойство винтовых поверхностей обеспечивает им широкое применение в технике: винты, шнеки, сверла, пружины?

Оказывается эти поверхности могут сдвигаться, т.е. совершая винтовое перемещение, поверхность скользит вдоль самой себя.

Винтовой называется поверхность, которая описывается какой - либо линией (образующей) при ее винтовом движении. Как уже отмечалось, что винтовое движение является сложным движением, при котором каждая точка образующей совершает одновременно два движения: вращательное и поступательное. При этом вращение происходит вокруг оси винта, а поступательное вдоль оси винта.

Если образующая - прямая линия, то поверхность называется линейчатой винтовой поверхностью или геликоидом. Геликоид является основой образования резьбы. 

Геликоиды подразделяются на прямые и наклонные в зависимости от того, перпендикулярна образующая к оси геликоида или наклонена. Шагом винтовой поверхности называется линейное перемещение образующей за один полный оборот.

Прямой геликоид

Прямой геликоид образуется движением прямолинейной образующей - l по двум направляющим, оставаясь в любой момент движения ^ оси, F(i, m), А(А2) Î F, А1 = ?

i - ось цилиндрической винтовой линии

m - цилиндрическая винтовая линия

Закон каркаса: l Ç i, l Ç m, l ^ i

Прямой геликоид может быть отнесен к числу коноидов и назван винтовым коноидом

(плоскость параллелизма перпендикулярна оси, i и m - направляющие)

Рис. 2-109

Проекции элементов определителя поверхности прямого геликоида

Наклонный геликоид

Наклонный геликоид отличается от прямого тем, что его прямолинейная образующая при винтовом перемещении пересекает ось геликоида под постоянным углом, отличным от прямого. Иначе говоря, образующая (l-прямая линия) наклонного геликоида при винтовом движении скользит по двум неподвижным направляющим (ось и цилиндрическая винтовая линия, как и у прямого), причем во всех своих положениях угол наклона образующей к оси не меняется. Поэтому можно сказать, что образующая в каждый момент движения будет параллельна соответствующим образующим некоторого конуса вращения, называемого направляющим конусом.

Построить наклонный геликоид Ф(i, m)

i - ось цилиндрической винтовой линии

m - цилиндрическая винтовая линия

Закон каркаса: l Ç i, l Ç m, l не ^ i , i ^ П1

Алгоритм построения

1. Задать проекции элементов определителя: построить цилиндрическую винтовую линию из 12 точек (рис. 2-112);

Проекции элементов определителя наклонного геликоида

Рис. 2-112

Задать проекции направляющего конуса (провести 12 образующих) (рис. 2-111), наклон образующих которого к оси определит угол наклона образующих геликоида. Углы j у образующих конуса (121) и геликоида (12) не искажаются, т. к. эти образующие занимают положение фронтали.

Проекции направляющего конуса

Рис. 2-111

2. Построение геликоида начинаем с горизонтальной проекции. Из точек 11 и 21 провести образующие геликоида параллельно соответствующим образующим конуса 111 и 211 до пересечения с осью – i1 (рис. 2-113).

Рис. 2-113

3. На фронтальной проекции из точек 12 и 22 провести образующие геликоида параллельно соответствующим образующим конуса 121 и 221 до пересечения с осью – i2.

4. Остальные образующие геликоида строить таким же образом

Направляющий конус может быть соосным с наклонным геликоидом (рис. 2-114)

Рис. 2-114

5. Определить видимость поверхности, как всегда, с помощью конкурирующих точек, например выбрать фронтально конкурирующие А2 = В2, т.е. образующая 32 закрывает образующую 22, направляющая и образующие от точки 8 до точки 10 - невидимы.

6. Обвести проекции поверхности на П2 с учетом видимости. Очертание геликоида на фронтальной проекции получается как огибающая семейство прямолинейных образующих.

7. В сечении геликоида плоскостью Y(Y2), перпендикулярной ее оси, получается спираль Архимеда.

Каркас образующих наклонного геликоида можно построить и без применения направляющего конуса.

Образующие 12М2 и 132N2 || П2, т.е. занимают положение фронталей, поэтому при заданном угле наклона образующей геликоида сразу определяют положение точек М2 и N2.

Расстояние (шаг) между этими точками делят на 12 равных частей и соединяют с соответствующими точками на цилиндрической винтовой направляющей.


Решение метрических задач с помощью преобразования комплексного чертежа