Начертательная геометрия

Частные случаи пересечения поверхностей вращения второго порядка

Пересечение соосных поверхностей вращения.

1. Две соосные поверхности вращения пересекаются по окружностям, плоскости которых перпендикулярны оси вращения: Г Ç D = m; n - окружности (рис. 3-48).

Рис. 3-48

2. Если центр сферы находится на оси поверхности вращения, то сферапересечёт эту поверхность по окружностям, плоскости которых перпендикулярны оси вращения: Ф Ç L = m; n - окружности (рис. 3-49).

Рис. 3-49

Теорема Монжа

Если две поверхности вращения второго порядка описаны около третьей поверхности вращения второго порядка, или вписаны в неё, то линия их пересечения распадается на две плоские кривые второго порядка. Причём, плоскости кривых проходят через прямую, соединяющую точки двойного соприкосновения.

На рис. 3-50 теорема Монжа проиллюстрирована пересечением двух конусов S и Г, в которые вписана сфера Ф. Чтобы вписать сферу, проводим перпендикуляры к очерковым образующим конуса Г(Г2) из точки О2: О2Р2 = О2К2 - радиус сферы (рис. 3-50а). Точки М и N (рис. 3-50б) - это точки, в которых касаются все три поверхности. В результате получаются два эллипса а и b, которые проходят через точки М и N (рис. 3-50в). На П1 эти эллипсы построены по принадлежности конусу Г (построения не показаны).

Рис. 3-50а

Рис. 3-50б

Рис. 3-50в


Решение метрических задач с помощью преобразования комплексного чертежа