Линейная и векторная алгебра Контрольная работа

Элементы линейной алгебры Матрицы и определители. Основные понятия

Свойства определителей Значение определителя не меняется при транспонировании матрицы (замен всех его строк соответствующими столбцами).

Действия с матрицами Две матрицы одинакового порядка называются равными, если равны все их соответствующие элементы. Две неравные квадратные матрицы одинакового размера могут иметь одинаковые определители.

Свойства умножения матриц

Ранг матрицы Определитель с элементами, стоящими на пересечении произвольных   строк, и  столбцов матрицы, называется минором -го порядка этой матрицы.

Система линейных уравнений (СЛУ)

Построение решений систем линейных уравнений

Понятие векторного (линейного) пространства Упорядоченная система  чисел , называется -мерным вектором. Каждое число   называется -той координатой (или компонентой) вектора .

Однородная система линейных уравнений (СЛОУ)

Векторная алгебра

Скалярное произведение векторов и его свойства Скалярным произведением двух векторов  и  называется число, равное произведению длин этих векторов на косинус угла между ними

Смешанное произведение векторов Смешанным произведением векторов называется произведение следующего вида: , т.е. вначале вектора  и  перемножаются векторно, а затем результат умножается скалярно на вектор .

Аналитическая геометрия Прямая на плоскости Уравнением линии на плоскости (относительно выбранной системы координат) называется такое уравнение  (неявный вид), которому удовлетворяют координаты  любой точки данной линии, и не удовлетворяют координаты ни одной точки, не лежащей на этой линии.

Уравнение прямой в отрезках

Преобразование прямоугольных координат на плоскости

Пример Уравнение окружности  привести к каноническому виду.

Уравнение эллипса , привести к каноническому виду.

Построение гиперболы При построении гиперболы необходимо построить прямоугольник со сторонами  и   и провести диагонали, которые и являются асимптотами (см. рис.). ,  - вершины гиперболы,  - действительная полуось,  - мнимая полуось,  - центр гиперболы.

Парабола. Параболой называется геометрическое место точек, равноудаленных от прямой, называемой директрисой и точки, называемой фокусом.

Поверхности и линии в пространстве Уравнением поверхности (в фиксированной системе координат) называется такое уравнение с тремя переменными , которому удовлетворяют координаты   любой точки данной поверхности и только они.

Уравнение прямой в пространстве

Некоторые задачи на прямую и плоскость в пространстве Найти угол между прямой и плоскостью.

Сфера Множество точек пространства, равноудаленных от данной точки , называемой центром, называется сферой.

Двуполостный гиперболоид Двуполостным гиперболоидом называется поверхность, которая в прямоугольной системе координат определяется уравнением

Все для ногтей оптом подробности на сайте.
Физика, начертательная геометрия - лекции и примеры решения задач